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Abstract

Tuberculosis (TB) constitutes a significant and
escalating threat to global health. In this study,
bioinformatics tools were used to find possible TB hub
genes and in silico approaches based on structure and
machine learning to target those genes. The study
identifies crucial hub genes in three distinct sample
types: latent tuberculosis infection (LTBI), active
tuberculosis (ATB) and healthy cells, using the
GSE62525 dataset from the GEO database. The
upregulated genes were used to conduct gene
enrichment analysis and construct a protein-protein
interaction (PPI) network. Results from the network
analysis showed the top ten hub genes. Interleukin-10
(IL10) was identified with promising therapeutic
potential in TB.

The residue contact was analysed to understand the
interaction between the selected crucial node and its
receptor. Peptide was built based on the 20:18 residue
interface to determine the nature of the interaction
between 1L10 and its receptor IL-/0RB. Virtual
screening confirmed the stability and interaction of two
mutants out of 6,480 mutant peptides that showed
significantly increased binding affinities to IL10. Both
variant-l (CG_KYC) and variant-Il (CV_RYC)
peptides exhibited substantial binding to 1L10, with
variant-1l showing the highest affinity, as seen by
binding free energies of -68.13 and -95.64 kcal/mol
respectively, post-500 ns MD simulation. The study
identified active peptides that could lead to future
therapies for TB.

Keywords: Tuberculosis, Network analysis, ML-based
mutation, DeepPurpose, Active Peptides, Molecular
dynamics simulation.

Introduction

Tuberculosis (TB) is a predominant global cause of mortality
and disability, impacting individuals  worldwide.
Mycobacterium tuberculosis, often known as MTB or
simply M. tuberculosis, is a pathogenic type of bacteria that
causes TB. It belongs to the Mycobacteriaceae family and
shares a relationship with Koch Bacillus. Airborne TB
affects one-third of the global population and kills between
one million and six million people annually®. Furthermore,
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there is a direct correlation between the various geographical
areas and the seven phylogenetically separate lineages that
make up the Mycobacterium tuberculosis complex (MTBC),
which is responsible for TB in humans. Among the most
geographically separated lineages, lineage 4 (sometimes
called Euro-American) and lineage 2 (which includes
Beijing) stand out.

Compared to more locally distributed lineages, these are
more dangerous. Concomitantly, disease severity,
transmission and pro-inflammatory host immune responses®
are all impacted by this heightened virulence. In addition,
TB epidemiology is characterized by its heterogeneity. But
the awareness surrounding HPV might not be as widespread
like other infectious diseases. Numerous factors, such as the
characteristics of the infective host, the pathogen, the
susceptible host, the environment and distal determinants,
contribute to the diverse patterns in TB epidemiology. The
total of these variables may increase or decrease
heterogeneity*®. A broad variety of clinical symptoms are
caused by the heterogenicity of TB, which is influenced by
factors such as pathogen traits and environmental
conditions. From asymptomatic latent infections to active
TB, these could range widely®.

In a clinical context, MTB infection can manifest in many
forms, ranging from asymptomatic latent tuberculosis
infection (LTBI) to active tuberculosis (ATB). There are
significant challenges in curing TB due to the complexity of
the disease and the wide range of lesions that patients
experience. Symptoms of acute TB include a persistent
cough that produces phlegm, night sweats, weakness and
loss of weight. Although LTBI controls the infection in the
majority of individuals exposed to MTB, 5-10% of those
exposed to ATB develop the disease 1940, It takes several
years after contracting LTBI for TB to develop.

In its dormant condition, MTB enhances drug resistance in
pathogenic bacteria by prolonging the generation time and
reducing the likelihood of mutational drug resistance’. The
majority of instances of TB outside the lungs are not
associated with transmission from person to person.
Furthermore, a study by Mokrousov et al showed that the
14717- 15 cluster had the highest mortality rates (58.3%) in
a location where TB is highly prevalent. In comparison,
31.4% of the isolates were from Beijing, while 15.2% were
from outside Beijing. This study emphasizes the significance
of taking medication resistance and TB strain pathogenicity
into account during drug development?”.
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Likewise, Telacebec, the antibiotic that Lee and Pethe?
analyzed, has finished three clinical trials and a promising
pre-clinical trial in which it inhibits MTB growth.
Specifically, a phase 2a clinical trial found that telacebec
dose was associated with a decrease in bacterial load in
patient sputum. To fully assess its therapeutic potential,
however, additional rigorous clinical trials are required?*.

The TB epidemic that swept North America and Europe in
the 18th and 19th centuries gave the disease its moniker,
"Captain Among These Men of Death." The discovery of
streptomycin in 1944 and isoniazid in 1952, along with
public health measures and the BCG vaccine, ushered in the
modern era of TB management®. Previously, 113
implantations involving bone graft goods used in
transplantation identified a TB epidemic in the United
States. A troubling trend of 105 patients starting TB
treatment and 8 patients dying is evident®*. The discovery of
effective medications in 1944 and the deployment of "triple
therapy” in 1952 are other landmarks in the history of TB
treatment. While innovations in the 1970s and 1980s
shortened treatment durations, drug-resistant strains
emerged, particularly in low-resource nations.

The development of new medications is essential in the
battle against medication resistance** while intermittent
regimens have demonstrated promise despite their difficulty.
Identifying biomarkers is crucial for advancing the
tuberculosis diagnostic and therapeutic pipeline'®. A study
identified 180 genes (DEGSs) linked to myeloid leukocyte
activation and cytokine production through bioinformatics
analysis of two datasets®. Among the 98 differentially
expressed genes and 4 hub genes found in a TB experiment,
according to a bioinformatics study, are those mainly linked
to different pathways such as cytokine-dependent signalling,
cytokine-cytokine receptor interaction, beta-galactosidase
activity, measles and JAK-STAT*,

This work showcases the use of bioinformatics analysis to
find TB genes that are differentially expressed. The focus is
on latent TB, active TB and healthy cases. In order to
pinpoint hub genes, the research relied on their physiological
functions and the protein-protein interaction network. The
goal is to find new ways to treat pulmonary TB by improving
our knowledge of its molecular mechanisms.

Material and Methods

Microarray Data Collection: The GEO database * was used
to gather microarray data from a single dataset that included
active, latent and healthy cells. The dataset with the
accession number GSE62525 was located using the filter
"Expression Profiling by Array" and the following criteria:
"Tuberculosis AND ("healthy" or "control") AND "latent"
AND "active". A total of 42 samples were identified within
this collection.

Recognition of Differentially Expressed Genes (DEGS):
In this particular case, of the 42 samples, 14 cells were
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identified as having ATB, 14 as having LTB and 14 as
healthy. First, we did a differential analysis on ATB in
comparison to healthy cells (group 1) and second, we did the
same thing in comparison to LTB (group 2). We constructed
a bar graph to analyse the datasets and determine the sample
mean. The GEO2R analysis! was applied to the samples.
Differentially expressed genes were those with a log2 fold
change (FC) value greater than or equal to 1.
Simultaneously, using a corrected P-value of less than 0.05,
a volcano plot was created to locate the DEGs that were
upregulated and downregulated. Also, to look at the genes
shared by both sets of people, a Venn diagram was made.

KEGG and GO Enrichment Analysis: A volcano plot and
an adjusted P-value less than 0.05%! were used in conjunction
with GO and KEGG to identify the upregulated and
downregulated DEGs. This analysis utilized the common
elevated genes from both groups 1 and 2. Within the GO
route (CC) are cellular components, biological processes
(BP) and molecular functions (MF). KEGG's presentation of
the metabolic pathways associated with the gene list makes
understanding the disease possible.

Network Analysis and Identification of Hub Genes: We
built a protein-protein interaction (PPI) network using the
Search Tool for the Retrieval of Interacting Genes
(STRING) * database to further study the genes that affected
tuberculosis pathogenesis. After the hub genes were found
using the degree technique. Cyctoscape*? used the cytohubba
plug-in® to identify them. After identifying the top 10 hub
genes through the use of the degree technique, they were
subjected to additional analysis.

The purpose of this study was to examine the function of the
top hub genes by collecting information about them from
different literature. The data allowed for the selection of the
potential target protein.

Template Peptide and Variants Generation: PDBePISA
(Proteins, Interfaces, Structures and Assemblies) was
employed to identify the interface residue between the
proteins??. We selected residues that exhibited a continuous
association for the purpose of peptide design. In the peptide
structure, the glycine (GLY) residues served as linkers. By
measuring the distance between the terminal residues of
neighbouring peptides, we were able to determine the
optimal number of GLY to utilize. We mutated these
particular residues to find the most efficient linker residues
that may further enhance the peptide-protein interaction.
What followed was an evaluation of each mutant's affinity
for the target protein. A string of five GLY residues (GG--
GGG) was produced by extracting each linker residue
separately in order to carry out the mutation.

A total of 3,20,00,00 mutants were generated using its tool
module in Python and the resultant glycine stretch was
subjected to mutation using a user-defined function written
in script®. The number of mutants increased to 20° (or

278



Research Journal of Biotechnology

3,200,000) variants when twenty amino acids were swapped
out at each of the five locations in the linker strand.
Following the generation of the mutant peptide stretch, full
mutant peptides were assembled by connecting the initial
two residues of the stretch with the second set of residues.
This led to additional analysis involving the produced
peptides.

Clustering: The nature of the amino acids was used to
further encode the variants that were created. There are a
total of twenty amino acids and they were categorized as
either non-polar, aromatic, polar, positively charged, or
negatively charged. The peptide sequence is shown in table
1 using single-letter codes (B, J, O, U and X). Clustering the
encoded sequences yielded unique sets of peptides. By
applying the elbow method®"46, we were able to ascertain the
ideal cluster size. The peptides were grouped into different
numbers of clusters using the elbow method and the WCSS
was computed for each cluster size.

WCSS assesses the compactness of clusters for a defined
number of clusters. The k-means function of the cluster
module was utilized for clustering in the sklearn package of
python® whereas the tfidf Vectorizer function of the feature
extraction module was employed for feature extraction. The
matplotlib module in Python 8 was used to generate all of
the plots. After clustering, the centroid of each cluster, which
stood in for the entire cluster, was extracted. Amino acid
sequences were obtained by decoding the three extracted
centroids. The four letters B, J, O, U and X were used to

Peptides
(3 different stretches)

Linkers (GGGGG)

Y
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construct numerous peptide sequences because they each
correspond to multiple residues.

Screening: The best peptide out of all the generated
sequences was screened out using a machine learning model
trained using the DeepPurpose framework’. An epoch of
150, a learning rate of 0.001, a batch size of 16 and a hidden
layer of 64 by 32 dimensions make up the model's
architecture. The 344 data points of protein-peptide
complexes used to train this predictive model are from the
Skempi Vv2.0'° dataset. The training dataset contained
information about proteins, peptides and their interactions.
With 70% of the data going into training, 10% into
validation and 20% into testing, this dataset was split into
three parts. Using DeepPurpose's conjoint triad encoder, the
sequences were encoded. Prior to moving further with the
training, the affinity value was adjusted. By calculating
negative logarithmic values for each and dividing the result
by the matching peptide sequence length, the affinity values
were normalized.

We trained the model using the encoded sequence and a
normalised affinity score, then employing Pearson
correlation to evaluate its performance. The trained model
was given the target protein sequence and produced peptide
sequences in order to determine which one was the best. We
proceeded with additional analysis using the two peptides
with the greatest predictions. The process of using ML to
choose the mutant peptides is illustrated in fig. 1.

Peptide Construct

v

Mutation
(at linkers)

Mutants

Encoding

A

{ Decoding

Clustering

Training &
Validation

ML model

Y

Predicted peptides

Fig. 1: Workflow of the peptide construction, mutation, clustering and screening of the peptides using ML.
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Table 1
Single letter representation for each amino acid group

Amino acid group Amino acids Representing Single
Letter Code
Non-polar G, V,ALIM B
Non-polar Aromatic F,Y W J
Polar uncharged S T,C,P,NQ 0
Polar positively charged K,R,H U
Polar negatively charged D, E X

Molecular Docking: The HDock server server*® was
utilised for protein-peptide docking. Predicting the complex
structure from the structures of the individual proteins is
what this docking is all about. A protein’s steric and physico-
chemical complementarity at its interface is crucial to
docking methods. This server employs a hybrid approach,
integrating both template-based and template-free docking
methods to predict the interactions between receptors and
ligands. In this case, the docking for targeted docking with
the 3D IL10 protein structure and the peptides brought
attention to the binding site residues. The PepFold 3 server?
was used to create the 3D structure of both the original
peptide and the variant peptides. Additional molecular
dynamics simulation research was conducted using the
protein-peptide complexes following docking.

Molecular Dynamics Simulation: By employing the
Gromacs 2022.4 software package?, protein-ligand complex
molecular dynamics (MD) simulations have been conducted.
Top-docked poses were utilized throughout the 500 ns MD
simulation. The molecular topology was generated prior to
using the CHARMMS36 force field'® on the proteins and
ligands. The electrostatic force over a given distance was
then determined using the Particle Mesh Ewald (PME)
method*’. The system was placed in a cubic solvation box
with a 1.0 nm buffer and then solvated with TIP3P water
molecules'®. Subsequently, by using Na* and CI- ions, the
neutralization was performed. To remove the steric conflicts,
the system 50,000 iterations of the steepest descent
algorithm were performed.

The LINCS algorithm®® was then employed to constrain
bonds and ensure system stability. Subsequently, the system
temperature was increased to 310 K over a 100 ps simulation
in the NVT ensemble, using a timestep of 2 fs. Furthermore,
the system was equilibrated in the NPT ensemble at 310 K
and 1 atmosphere for 1 ns. The initial production run was
500 ns long. The Parrinello-Rahman pressure coupling
method was employed to maintain constant pressure during
the production run? while the velocity-rescaling approach?
was used to couple the temperature. The post MD simulation
analysis was performed on the visual platform called
“Analogue” developed by Growdea Technologies®®*2,

MM/GBSA: The binding free energy of the protein-peptide
complexes was determined using the GROMACS add-on
tool gmx MM/PBSA“. Here, the last 30 ns of the MD
simulation were used for the calculation of the binding free
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energy. The equations applied to compute the MM/GBSA
are shown as follows:

AG = Gcomplex - [Greceptor + Gligand] (1)
AGbinding = AH — TAS (2)
AH = AGgyus + AGsory 3)
AGgas = AEg, + AEypwaars 4)
AGsory = AEgp + AEsygp ®)
AEgyrr = v.SASA (6)

Here, equation 1 represents the change in Gibbs free energy
(AG) of protein-ligand complex formation. The total free
energies of the complex, free enzyme and ligand in solution
are denoted by Geomplex, Genzyme and Giigana respectively. The
binding free energy (AGuing) is the difference between the
total free energy of the complex and the sum of the free
energies of the unbound components. The enthalpy change
(AH) includes contributions from gas-phase energy (AGgas)
and solvation free energy (AGsolv). The binding free energy
also includes an entropy term (AS). Electrostatic energy
(AEgL) and van der Waals energy (AEvwaw) contribute to the
total interaction energy. The solvation free energy is further
divided into non-polar (AGgg) and polar (AGsur)
components. The non-polar component is calculated based
on the change in solvent-accessible surface area (SASA) and
the solvent surface tension parameter (y).

Results and Discussion

Recognition of DEGs: The GEO database's accession
number, GSE62525, was used to get a gene expression
profile for three types of samples: ATB (active tuberculosis),
LTBI (latent tuberculosis infection) and healthy cells. It was
divided into two groups for the purposes of analysis: ATB
against healthy cells (group 1) and ATB versus LTBI (group
2). A comparison of the data set was conducted with the help
of a box plot, which demonstrates that selected samples have
comparable mean values (Fig. 2). A total of 8794 DEGs were
identified in group 1, of which 371 genes were upregulated
and 8423 were downregulated. Similarly, 6962 DEGs were
identified in group 2, of which 504 genes were upregulated
and 6458 were downregulated. In the volcano plot, the
distribution of every DEG is illustrated.

The downregulated genes in both groups exhibit a greater
degree of significance compared to the upregulated genes
group 1 containing a greater quantity of DEGs than group 2

(Fig. 3).
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Fig. 2: Box plot indicating the average value of the samples taken (a: group 1; b: group 2)
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Fig. 4: Venn diagram showing the common genes (a: upregulated genes and b: downregulated genes)
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Fig. 5: Gene enrichment of the common DEGs with initial five log values using gprofiler

A Venn diagram is produced to illustrate the common genes
showing that there are 162 upregulated genes and 3675
downregulated genes (Fig. 4).

Pathway Enrichment Analysis: Gene enrichment utilising

gprofiler’! yielded the KEGG and GO pathways. The
analysis used the common genes that were upregulated (162
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upregulated genes) and the initial five processes with the
highest log values were selected (Fig. 5). The molecular
functions (MF) domain emphasises significant functions
such as protein binding, interleukin-8 receptor activity and
immune receptor activity, showcasing the complex
interactions of proteins in immune responses. The biological
activities (BP) that have emerged, include response to
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external stimuli, defence response, positive regulation of
immune system activities, immune effector process and
immunological response, illustrating the body's advanced
mechanisms to identify and react to external threats.

The cellular components (CC) study identified key locations
for immunological activity, such as secretory vesicles,
secretory granules, the extracellular region, the cell
periphery and cytoplasmic vesicles. KEGG pathways
including pertussis, Staphylococcus aureus infection,
haematopoietic cell lineage and amoebiasis, as well as
REAC pathways such as neutrophil degranulation, the
immune system, the innate immune system and interleukin-
10 signalling, were discovered, demonstrating the range of
diseases and immune responses under investigation.
WikiPathways emphasised the impact of LDL on CD14 and
TLR4 and the biological processes related to spinal cord
injury. Meanwhile, the Human Protein Atlas (HPA)
concentrated on the shape of enterocytes in the small
intestine, particularly highlighting microvilli.

The Human Phenotype Ontology (HP) identified premature
loss of permanent teeth as a manifestation of the genetic
basis of this illness. This thorough research highlights the
interrelationship between genetic expressions, pathways and
physiological responses, providing profound insights into
the intricate dynamics of health and disease.

Hub Gene Identification: The common upregulated genes
were employed for protein-protein interaction (PPI) utilising
STRING. The network has significantly more interactions
than expected. Out of a total of 162 common genes, 149
formed connections with 149 nodes, resulting in the
identification of 319 edges (Fig. 6). The nodes represent
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individual proteins or genes and the lines (edges) indicate the
relationships or interactions between them. The different
colours of the nodes and edges often represent various types
of interactions or classifications such as activation,
inhibition, or different functional groups. Further, the degree
method was utilised to identify the top 10 hub genes using
the Cytohubba plug-in of the Cytoscape.

The top 10 hub genes found in the Cytohubba were listed in
Table 1, along with their scores determined by the degree
method. The top score was observed for IL1B with a score
of 42, while TLR4 and MMP9 had a score of 31 and IL10
had a score of 30. Fig. 7 shows the interactions between
these top 10 genes. The interactions among various proteins,
cytokines, chemokines and receptors that regulate immune
responses were visually represented in this network. IL1B
and IL10 are cytokines that exhibit contrasting effects during
inflammation; MMP9 is an enzyme that aids in immune cell
migration and degrades the extracellular matrix and TLR4 is
a receptor involved in pathogen recognition.

FCGR1A receives the Fc segment of IgG antibodies as a
receptor; CXCR1 and CXCR2 are receptors for chemokines.
The protein CD274/PD-L1 is capable of impeding the
immune response in order to avert tissue damage. The
enzyme ARG1 can regulate immune responses through
arginine depletion while the receptor TREM1 can enhance
inflammatory responses. The top 10 hub genes (IL1B,
TLR4, MMP9, 1L10, FCGR1A, CXCR2, CXCR1, CD274,
ARG1 and TREML1) were searched with the objective of
identifying a target protein. Several genes among them
exhibited potential as therapeutic targets or as prognostic
indicators for TB determination.

Table 2
Top 10 hub genes ranked by Degree method with their scores
Rank Gene Score
1 IL1B 42
2 TLR4 31
2 MMP9 31
4 IL10 30
5 FCGR1A 24
6 CXCR2 21
6 CXCR1 21
8 CD274 19
9 ARG1 17
10 TREM1 14
Table 3
Binding free energy components for the protein-peptide complexes using MM/GBSA technique.

System AVDWAALS AEEL AENPOLAR AGGAS AGSOLV ATOTAL
Native 0.00 £ 0.00 -0.01+ 0.02 -0.00 £+ 0.00 -0.01 £ 0.02 -0.00 £ 0.00 -0.01 £ 0.02
Variant-I- -69.73+7.20 | 12.83+14.11 | -11.23+0.36 |-56.90+13.55| -11.23+0.36 | -68.13 +13.68

CG_KYC
Variant-1I- | -104.30+7.25 | 2254+1461 | -13.88+0.40 |-81.76+11.96| -13.88+0.40 | -95.64+11.86
CV_RYC
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Nevertheless, with regard to their functions in the immune
response against Mycobacterium tuberculosis, I1L-10
(interleukin-10) emerges as a notably promising target for
therapeutic intervention. 1L-10 is an anti-inflammatory
cytokine that is essential for preventing tissue damage to the
host by regulating the immune response®. I1L-10 has the
potential to inhibit immune responses in the context of
tuberculosis, thereby enabling the bacteria to elude
elimination and sustain a dormant infection®. 1L-10 levels
that are elevated, have been linked to a heightened
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vulnerability to tuberculosis and to more severe

consequences of the disease.

A potential therapeutic approach for tuberculosis involves
the modulation of I1L-10 activity or its associated signalling
pathways, as it could strengthen the immune system's
capacity to eradicate the infection. Potentially, the efficacy
of the host immune response against Mycobacterium
tuberculosis could be enhanced through the reduction of
IL10-mediated immunosuppression.
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Fig. 7: Interaction of hub genes found from the cytohubba in the Cytoscape.
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Fig. 8: (1) PDB structure visualization, (a) 3D structure of IL10 complexed with both IL-10Re and IL-10Rp
(b) Interacting chains (c) Number of interface residues; (I1) Interaction analysis; (d) of 3D structure of IL10
complexed with IL-10Rp (e) Interacting residues between IL10 and IL-10Rp.

The biological activity of I1L-10, especially its interactions
with the IL-10 receptor complex, depends on its dimeric
form?%21, Two alpha units (IL-10Ra) that bind to the IL-10
dimer and two beta units (IL-10RB) required for signal
transduction make up this receptor complex?®. 1L-10's
interaction with its receptor complex sets off a series of
intracellular signalling events that ultimately lead to the
cytokine's immunoregulatory effects, which include immune
cell activity modulation and suppression of inflammatory
responses’:2832 Preventing signal transduction by impeding
IL-10's interaction with the IL-10 receptors might constitute
a significant strategy. This may be accomplished via the
development of antibodies that inhibit the receptor or
molecules that mimic the binding sites of IL-10 on the
receptor.

Interface Residue: The protein data bank (PDB) was

queried with PDB ID 6X93 to acquire the three-dimensional
crystal structure of the chosen protein (IL10 complex). Parts
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I and 1l of fig. 8 show the results of the thorough analysis of
the structure. The observation of the 1L.10 complex binding
to both IL-10Ra and IL-10Rp can be seen in fig. 8(a). Fig.
8(b) shows the results of an analysis of the PDBsum database
that revealed the chains' interconnections. Following the
IL10 dimer chain A-D in terms of the number of contacts
with interface residues, chain A-C exhibited the largest
number of interactions (Fig. 8(c)). Therefore, the interaction
between IL-10 (chain A) and IL-10Rf (chain C) was greatest
with 20:18 residues. Fig. 8(d, e) shows the interaction
residues between IL10 and IL-10RB, which were further
examined using the A-C chain. The interaction between
chain A (IL10) and chain C (IL-10Rp) involved 18 residues.

After that, the PDBePISA tool was used to analyze the chain
A-C complex and forecast the residues at the interface. For
peptide design, we looked for and chose residues that formed
a continuous structure. Interface chain C residues were
measured by PDBePISA: 57-61, 63, 65, 78-85, 106, 108—
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109, 138, 140-143, 147-150 and 197-198. The following
sequences of amino acids were designed into peptides: 57—
65, 78-85, 138-150, LSYRIFQDK, SLSKYGDH and
NEYETWTMKNVYN, in that order. The three peptide
distances (P1, P2 and P3) were plotted in fig. 9. The
measurement of 6.1 A was taken for the distance between P1
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residues L and P2 residues H. The 8.9 A distance was
measured between P2's S and P3's N. Typically, the distance
between neighbouring residues in a fully expanded
polypeptide chain containing Ca atoms is approximately 3.8
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Fig. 10: (a) Elbow method plot (b) K-means clustering for 3 clusters (c) K-means clustering for 4 clusters
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[ variant 1 Peptide (_CG_KYC_)

[[] variant 2 Peptide (_CV_RYC_)

Fig. 11: Peptides (native, variant-1 and variant-11) docked with the protein IL10 aligned with each other represented
in 3D structure.
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Therefore, the first gap was connected using two residues
(GG), while the second gap was connected using GGG. The
final product is a peptide with 35 residues, composed of 30
primary amino acids and 5 secondary amino acids that serve
as linkers. Because of its tiny size and flexibility, glycine is
frequently utilized as a linker in peptides and proteins. This
is because it can help to ensure that functional domains are
folded correctly or that different protein domains can bind to
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each other without causing much steric hindrance. Here is
the final peptide sequence with the linkers added:
KDQFIRYSLGGHDGYKSLSGGGNEYETWTMKNVY
N. This sequence was considered the native peptide
sequence that could bind to IL10. Further, this sequence was
taken to generate mutations in the linkers for better binding
with the target protein IL10.
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Mutation and Clustering: The purpose of performing
targeted modifications at these linker residues was to
determine which ones would improve the peptide-protein
interaction the most. The next thing to do was to see how
well each mutant is bound to the target protein. Multiple
mutations were carried out at each linker residue to alter its
function. There were 20° (or 320,000) mutations in all. A
process involving peptide conversion according to amino
acid residues was used to create the mutant peptides. There
are five distinct types of amino acid residues distinguished
by their chemical properties: polar uncharged (pol),
positively charged (pos), negatively charged (neg) and non-
polar aromatic (NPAr). The side chain characteristics of
amino acids, which impact their behaviour and interaction in
proteins, are the basis for this classification.

The peptides' amino acid sequences were transformed using
the one-letter codes according to the category that each
residue belonged to. This transformation made the sequences
easier to understand by classifying the amino acids into five
separate groups according to their chemical characteristics.
A k-means clustering analysis was subsequently performed
on the reduced peptide sequences. A vector quantization
approach seeks to group 'n' observations into 'k’ groups, with
the goal that each observation should be part of the group
with the closest mean. This method finds groupings or
clusters in the data, with a predetermined number of clusters

(k).

The elbow method is utilised to determine the optimal
number of clusters (k) for the k-means clustering algorithm.
Calculating the WCSS for different values of k is integral to
this procedure. The objective is to reduce the WCSS value,
which quantifies the variance within each cluster. On the
other hand, the WCSS tends to go down to zero as the
number of clusters grows. The decline rate changes
dramatically at the "elbow" position on the WCSS versus
cluster number plot. Having a lesser number of clusters and
minimizing the WCSS, are both achieved at this ideal
location. There is a limit beyond which further clustering
does not significantly increase the variance explained, a
phenomenon known as diminishing returns.

To summarize, this approach of grouping and simplifying
peptide sequences for cluster analysis is done quickly by
applying k-means clustering. The elbow technique is
beneficial for determining the optimal number of clusters by
identifying the optimal balance between model complexity
and clustering granularity.

Many people believe that the sweet spot for cluster size is
when the curve begins to flatten out, creating an "elbow."
The elbow plot indicated the possibility of 2-4 cluster
formation, as demonstrated in fig. 10(a). Two clusters are
insufficient; therefore, we created and plotted three and four
clusters instead. The plots for 3 clusters with centroids and 4
clusters with centroids are displayed in fig. 10(b, ). The data
was clustered using three clusters instead of the four
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projected clusters because two of them were found to be
quite similar.

The centroids of these 3 clusters were extracted and the
sequences are as follows:

UX0JBUJOBOBUXBJUOBOUJOOXJXOJOBUOBJO
UX0JBUJOBOBUXBJUOBOUJXOXJX0OJOBUOBJO
UX0JBUJOBBBUXBJUOBOJBOOXJXOJOBUOBJO

The mutant region (position that can be mutated) is
highlighted in yellow in each sequence. These centroids
were decrypted/decoded back to get the amino acid
sequences. Further, the mutated peptides were generated
based on three centroids and the total number of sequences
generated were 6480. These 6480 mutant peptides were used
for virtual screening using machine learning.

Virtual Screening: All 6480 peptide sequences were
screened to identify the most suitable peptide. DeepPurpose
Architecture, which is a machine learning (ML) approach,
was used to develop the model. The parameters were
optimised and the screening proceeded. The best encoder
was found to be Conjoint_triad, its R-squared on the test
dataset was 0.966 and its Pearson correlation was 0.983;
thus, it was used for the screening of 6480 peptides. The
screening resulted in two best-predicted peptides: variant-I
peptide — KDQFIRYSLCGHDGYKSLSKYCNEYETW
TMKNVYN and variant-1l1 peptide — KDQFIRYSLCVH
DGYKSLSRYCNEYETWTMKNVYN. These two mutant
peptides were used for molecular docking along with the
native peptide — KDQFIRYSLGGHDGYKSLS GGGNE
YETWTMKNVYN. Here, the highlighted red colour in the
peptide sequences shows the mutated region.

Molecular Docking: Using the PepFold 3 server, we were
able to predict the three-dimensional structures of both the
native peptide and the constructed/mutant peptides. The
Hdock server was used to dock both normal and mutant
peptides with IL-10 chain A. The following residues were
chosen for targeted docking: 13-14:A, 17-18:A, 20-22:A,
24-25:A, 28-29:A, 32-A, 73-74:A, T7-78:A, 81-92:A, 95—
97:A, 99-100:A, 102-104:A, 107:A. The protein-peptide
complexes that were docked, were shown to be positioned
over each other in fig. 11. The docking scores for the three
mutants were as follows: -118.28 kcal/mol for native, -
226.43 kcal/mol for variant-l and -215.38 kcal/mol for
variant-11.

The protein-protein complexes included in the Protein Data
Bank typically have docking scores of approximately -200
kcal/mol or higher, as per hdock docking. In this case, the
dock score was higher for the mutant peptides compared to
the normal peptide. This suggests that the synthetic peptide
has a higher binding affinity for the target protein IL10
compared to the natural peptide. Additional supplemental
fig. S1 shows the LigPlot+ visualization of the protein-
peptide interaction.
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Figure S1: 2D interaction between the protein-peptide complexes for (a) Native peptide,
(b) Mutant 1 peptide and (c) Mutant 2 peptide

One hydrogen bond with IL10 (Asp100) was found in the
natural peptide (Tyrl5). Asp2-Arg27, Lys1-Glu54, Tyr25-
Leu53 and Val33-Arg110 were the peptide-protein residues
that variant-1 interacted with in IL10. In variant-11, 1L10's
Arg27 and Leu26 interacted with Thr29 and Asn32
respectively. Additionally, the docked protein-peptide
complexes were simulated using molecular dynamics
software.

Molecular Dynamics Simulation: Molecular dynamics
simulations were conducted to examine the stability and
flexibility of the protein-peptide complexes. The root mean
square deviation (RMSD) was calculated to assess the
conformational change that happens upon the binding of
proteins and peptides. As illustrated in fig. 12(a, c), the
relative mechanical strain (RMSD) of the Ca atoms of the
protein when attached to the peptides is displayed. Fig. 12(b,
d) shows the results of reporting RMSD for the peptides,
while the protein molecule was utilized for fitting and
aligning the structures. It is acceptable to have RMSD values
between 0.1 and 0.3 nm, or 1-3 A, particularly for small and
globular proteins. Significant changes in structural
conformation are indicated by deviations from this range.

The stability of the protein-ligand complex is positively
connected with a reduced variation in the RMSD during the
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molecular dynamics simulation whereas a higher fluctuation
implies a less stable protein-ligand complex 32°, The native
peptide-bound protein exhibited a high RMSD of up to 2-3
nm throughout the 500 ns simulation. The RMSD of the
protein bound to the two mutant peptides was significantly
lower than that of the native (Fig. 12a). When attached to the
two mutant peptides, both proteins displayed RMSD values
between 0.5 and 0.75 nm, suggesting that they were quite
stable. During the 500 ns simulation, the RMSD of the native
peptides was 5-6 nm whereas the other peptides followed a
similar pattern.

Fig. 12(b) shows that in comparison to the normal peptide,
the variant peptides exhibited steady protein binding with
RMSD values ranging from 1 nm to 1.5 nm. For an in-depth
study, fig. 12(c, d) displayed the RMSD protein and mutant
peptides for the last 30 ns of the simulation. It was noted that
the protein-peptide bond remained stable for the majority of
the remaining 30 ns.

Fig. 12(c) shows that in contrast, over the last 30 ns of the
simulation, the RMSD of the protein attached to the variant-
| peptide dropped from 0.65 nm to 0.6 nm and then remained
steady and constant. In the last 30 ns of the simulation, the
RMSD of the protein bound to variant-11 peptide decreased
from 0.5 nm to 0.45 nm without any notable fluctuations.
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In the last 30 ns of the simulation, the RMSD of the variant-
| peptide decreased from 1.6 nm to 1.5 nm, as seen in fig.
12(d). Variant-1l peptide showed a RMSD decrease of 1.1
nm to 1 nm for the last 30 ns, suggesting a more stable
conformation on binding to the protein than variant-I.
Overall, when bound to the IL10 protein, the mutant peptides
were more stable than the normal peptide.

MM/GBSA: The MM/GBSA method was also used to
determine the protein-peptide complexes' binding free
energies. All of the protein-peptide complex binding free
energy components are given in table 2. The stronger is the
binding affinity between the molecules involved, the lower
the binding free energy value must be; a negative value
indicates an advantageous and spontaneous binding process.
A weak interaction with the protein was indicated by the
binding free energy of -0.01 + 0.02 kcal/mol that the natural
peptide displayed. A high score usually means that the
binding process demands energy; this suggests that it may
have an unfavourable interaction with 1L.10.

In contrast to the original protein, the binding free energy of
the two mutant peptides was significantly higher. Binding
free energies of -68.13 + 13.68 kcal/mol and -95.64 + 11.86
kcal/mol were observed for variant-1 peptide (CG_KYC)
and variant-1l peptide (CV_RYC) respectively in this
context. These numbers point to spontaneously higher
binding affinities to IL10, with variant-1l displaying the
higher affinity of the two.

It has been found that mutations can boost binding affinity
which means that peptide sequences can be accurately
modified to improve target protein interaction. When it
comes to developing therapies, this could have major
ramifications because high-affinity peptides are powerful
regulators of protein function. Further research into therapies
targeting 1L10 or similar pathways may find the mutant
peptides to be intriguing candidates due to their strong
binding capabilities.

Conclusion

Researchers found that peptide linker alterations
significantly increased binding affinity to the IL10 protein
which could be used as a therapeutic intervention in
tuberculosis. The work conducted molecular dynamics
simulations and virtual screening to validate the predictions
of the efficacy of mutant peptides that were made using
machine learning techniques. The results show that after
interacting with IL10, the mutant peptides were more stable
and had higher binding affinities than the normal peptide.
The maximum affinity and stability were observed in the
variant-11 peptide (CV_RYC), suggesting that it could be a
promising option for future therapeutic research.

New tuberculosis medicines can be developed by merging
network biology, computational biology, machine learning
and molecular dynamics simulations. The study
demonstrates the usefulness of this approach in discovering
and improving physiologically active peptides.
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