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Abstract 
Tuberculosis (TB) constitutes a significant and 

escalating threat to global health. In this study, 

bioinformatics tools were used to find possible TB hub 

genes and in silico approaches based on structure and 

machine learning to target those genes. The study 

identifies crucial hub genes in three distinct sample 

types: latent tuberculosis infection (LTBI), active 

tuberculosis (ATB) and healthy cells, using the 

GSE62525 dataset from the GEO database. The 

upregulated genes were used to conduct gene 

enrichment analysis and construct a protein-protein 

interaction (PPI) network. Results from the network 

analysis showed the top ten hub genes. Interleukin-10 

(IL10) was identified with promising therapeutic 

potential in TB.  

 

The residue contact was analysed to understand the 

interaction between the selected crucial node and its 

receptor. Peptide was built based on the 20:18 residue 

interface to determine the nature of the interaction 

between IL10 and its receptor IL-10Rβ. Virtual 

screening confirmed the stability and interaction of two 

mutants out of 6,480 mutant peptides that showed 

significantly increased binding affinities to IL10. Both 

variant-I (CG_KYC) and variant-II (CV_RYC) 

peptides exhibited substantial binding to IL10, with 

variant-II showing the highest affinity, as seen by 

binding free energies of -68.13 and -95.64 kcal/mol 

respectively, post-500 ns MD simulation. The study 

identified active peptides that could lead to future 

therapies for TB. 
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Introduction 
Tuberculosis (TB) is a predominant global cause of mortality 

and disability, impacting individuals worldwide. 

Mycobacterium tuberculosis, often known as MTB or 

simply M. tuberculosis, is a pathogenic type of bacteria that 

causes TB. It belongs to the Mycobacteriaceae family and 
shares a relationship with Koch Bacillus. Airborne TB 

affects one-third of the global population and kills between 

one million and six million people annually36. Furthermore, 

there is a direct correlation between the various geographical 

areas and the seven phylogenetically separate lineages that 

make up the Mycobacterium tuberculosis complex (MTBC), 

which is responsible for TB in humans. Among the most 

geographically separated lineages, lineage 4 (sometimes 

called Euro-American) and lineage 2 (which includes 

Beijing) stand out.  

 

Compared to more locally distributed lineages, these are 

more dangerous. Concomitantly, disease severity, 

transmission and pro-inflammatory host immune responses8 

are all impacted by this heightened virulence. In addition, 

TB epidemiology is characterized by its heterogeneity. But 

the awareness surrounding HPV might not be as widespread 

like other infectious diseases. Numerous factors, such as the 

characteristics of the infective host, the pathogen, the 

susceptible host, the environment and distal determinants, 

contribute to the diverse patterns in TB epidemiology. The 

total of these variables may increase or decrease 

heterogeneity43. A broad variety of clinical symptoms are 

caused by the heterogenicity of TB, which is influenced by 

factors such as pathogen traits and environmental 

conditions. From asymptomatic latent infections to active 

TB, these could range widely5. 

 

In a clinical context, MTB infection can manifest in many 

forms, ranging from asymptomatic latent tuberculosis 

infection (LTBI) to active tuberculosis (ATB). There are 

significant challenges in curing TB due to the complexity of 

the disease and the wide range of lesions that patients 

experience. Symptoms of acute TB include a persistent 

cough that produces phlegm, night sweats, weakness and 

loss of weight. Although LTBI controls the infection in the 

majority of individuals exposed to MTB, 5-10% of those 

exposed to ATB develop the disease 10,40. It takes several 

years after contracting LTBI for TB to develop.  

 

In its dormant condition, MTB enhances drug resistance in 

pathogenic bacteria by prolonging the generation time and 

reducing the likelihood of mutational drug resistance7. The 

majority of instances of TB outside the lungs are not 

associated with transmission from person to person41. 

Furthermore, a study by Mokrousov et al showed that the 

14717- 15 cluster had the highest mortality rates (58.3%) in 

a location where TB is highly prevalent. In comparison, 

31.4% of the isolates were from Beijing, while 15.2% were 
from outside Beijing. This study emphasizes the significance 

of taking medication resistance and TB strain pathogenicity 

into account during drug development27.  
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Likewise, Telacebec, the antibiotic that Lee and Pethe24 

analyzed, has finished three clinical trials and a promising 

pre-clinical trial in which it inhibits MTB growth. 

Specifically, a phase 2a clinical trial found that telacebec 

dose was associated with a decrease in bacterial load in 

patient sputum. To fully assess its therapeutic potential, 

however, additional rigorous clinical trials are required24. 

 

The TB epidemic that swept North America and Europe in 

the 18th and 19th centuries gave the disease its moniker, 

''Captain Among These Men of Death.'' The discovery of 

streptomycin in 1944 and isoniazid in 1952, along with 

public health measures and the BCG vaccine, ushered in the 

modern era of TB management9. Previously, 113 

implantations involving bone graft goods used in 

transplantation identified a TB epidemic in the United 

States. A troubling trend of 105 patients starting TB 

treatment and 8 patients dying is evident34. The discovery of 

effective medications in 1944 and the deployment of ''triple 

therapy'' in 1952 are other landmarks in the history of TB 

treatment. While innovations in the 1970s and 1980s 

shortened treatment durations, drug-resistant strains 

emerged, particularly in low-resource nations.  

 

The development of new medications is essential in the 

battle against medication resistance44 while intermittent 

regimens have demonstrated promise despite their difficulty. 

Identifying biomarkers is crucial for advancing the 

tuberculosis diagnostic and therapeutic pipeline13. A study 

identified 180 genes (DEGs) linked to myeloid leukocyte 

activation and cytokine production through bioinformatics 

analysis of two datasets25. Among the 98 differentially 

expressed genes and 4 hub genes found in a TB experiment, 

according to a bioinformatics study, are those mainly linked 

to different pathways such as cytokine-dependent signalling, 

cytokine-cytokine receptor interaction, beta-galactosidase 

activity, measles and JAK-STAT48.  

 

This work showcases the use of bioinformatics analysis to 

find TB genes that are differentially expressed. The focus is 

on latent TB, active TB and healthy cases. In order to 

pinpoint hub genes, the research relied on their physiological 

functions and the protein-protein interaction network. The 

goal is to find new ways to treat pulmonary TB by improving 

our knowledge of its molecular mechanisms. 

 

Material and Methods 
Microarray Data Collection: The GEO database 1 was used 

to gather microarray data from a single dataset that included 

active, latent and healthy cells. The dataset with the 

accession number GSE62525 was located using the filter 

''Expression Profiling by Array'' and the following criteria: 

''Tuberculosis AND (''healthy'' or ''control'') AND ''latent'' 

AND ''active''. A total of 42 samples were identified within 

this collection. 

 

Recognition of Differentially Expressed Genes (DEGs): 

In this particular case, of the 42 samples, 14 cells were 

identified as having ATB, 14 as having LTB and 14 as 

healthy. First, we did a differential analysis on ATB in 

comparison to healthy cells (group 1) and second, we did the 

same thing in comparison to LTB (group 2). We constructed 

a bar graph to analyse the datasets and determine the sample 

mean. The GEO2R analysis1 was applied to the samples. 

Differentially expressed genes were those with a log2 fold 

change (FC) value greater than or equal to 1. 

Simultaneously, using a corrected P-value of less than 0.05, 

a volcano plot was created to locate the DEGs that were 

upregulated and downregulated. Also, to look at the genes 

shared by both sets of people, a Venn diagram was made. 

 

KEGG and GO Enrichment Analysis: A volcano plot and 

an adjusted P-value less than 0.0531 were used in conjunction 

with GO and KEGG to identify the upregulated and 

downregulated DEGs. This analysis utilized the common 

elevated genes from both groups 1 and 2. Within the GO 

route (CC) are cellular components, biological processes 

(BP) and molecular functions (MF). KEGG's presentation of 

the metabolic pathways associated with the gene list makes 

understanding the disease possible. 

 

Network Analysis and Identification of Hub Genes: We 

built a protein-protein interaction (PPI) network using the 

Search Tool for the Retrieval of Interacting Genes 

(STRING) 38 database to further study the genes that affected 

tuberculosis pathogenesis. After the hub genes were found 

using the degree technique. Cyctoscape12 used the cytohubba 

plug-in6 to identify them. After identifying the top 10 hub 

genes through the use of the degree technique, they were 

subjected to additional analysis. 

 

The purpose of this study was to examine the function of the 

top hub genes by collecting information about them from 

different literature. The data allowed for the selection of the 

potential target protein.  

 

Template Peptide and Variants Generation: PDBePISA 

(Proteins, Interfaces, Structures and Assemblies) was 

employed to identify the interface residue between the 

proteins22. We selected residues that exhibited a continuous 

association for the purpose of peptide design. In the peptide 

structure, the glycine (GLY) residues served as linkers. By 

measuring the distance between the terminal residues of 

neighbouring peptides, we were able to determine the 

optimal number of GLY to utilize. We mutated these 

particular residues to find the most efficient linker residues 

that may further enhance the peptide-protein interaction. 

What followed was an evaluation of each mutant's affinity 

for the target protein. A string of five GLY residues (GG--

GGG) was produced by extracting each linker residue 

separately in order to carry out the mutation.  

 

A total of 3,20,00,00 mutants were generated using its tool 
module in Python and the resultant glycine stretch was 

subjected to mutation using a user-defined function written 

in script40. The number of mutants increased to 205 (or 
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3,200,000) variants when twenty amino acids were swapped 

out at each of the five locations in the linker strand. 

Following the generation of the mutant peptide stretch, full 

mutant peptides were assembled by connecting the initial 

two residues of the stretch with the second set of residues. 

This led to additional analysis involving the produced 

peptides.  

 
Clustering: The nature of the amino acids was used to 

further encode the variants that were created. There are a 

total of twenty amino acids and they were categorized as 

either non-polar, aromatic, polar, positively charged, or 

negatively charged. The peptide sequence is shown in table 

1 using single-letter codes (B, J, O, U and X). Clustering the 

encoded sequences yielded unique sets of peptides. By 

applying the elbow method37,46, we were able to ascertain the 

ideal cluster size. The peptides were grouped into different 

numbers of clusters using the elbow method and the WCSS 

was computed for each cluster size.  

 

WCSS assesses the compactness of clusters for a defined 

number of clusters. The k-means function of the cluster 

module was utilized for clustering in the sklearn package of 

python30 whereas the tfidf Vectorizer function of the feature 

extraction module was employed for feature extraction. The 

matplotlib module in Python 18 was used to generate all of 

the plots. After clustering, the centroid of each cluster, which 

stood in for the entire cluster, was extracted. Amino acid 

sequences were obtained by decoding the three extracted 

centroids. The four letters B, J, O, U and X were used to 

construct numerous peptide sequences because they each 

correspond to multiple residues. 

 

Screening: The best peptide out of all the generated 

sequences was screened out using a machine learning model 

trained using the DeepPurpose framework17. An epoch of 

150, a learning rate of 0.001, a batch size of 16 and a hidden 

layer of 64 by 32 dimensions make up the model's 

architecture. The 344 data points of protein-peptide 

complexes used to train this predictive model are from the 

Skempi v2.019 dataset. The training dataset contained 

information about proteins, peptides and their interactions. 

With 70% of the data going into training, 10% into 

validation and 20% into testing, this dataset was split into 

three parts. Using DeepPurpose's conjoint triad encoder, the 

sequences were encoded. Prior to moving further with the 

training, the affinity value was adjusted. By calculating 

negative logarithmic values for each and dividing the result 

by the matching peptide sequence length, the affinity values 

were normalized.  

 

We trained the model using the encoded sequence and a 

normalised affinity score, then employing Pearson 

correlation to evaluate its performance. The trained model 

was given the target protein sequence and produced peptide 

sequences in order to determine which one was the best. We 

proceeded with additional analysis using the two peptides 

with the greatest predictions. The process of using ML to 

choose the mutant peptides is illustrated in fig. 1.  

 

 
Fig. 1: Workflow of the peptide construction, mutation, clustering and screening of the peptides using ML. 
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Table 1 

Single letter representation for each amino acid group 

Amino acid group Amino acids Representing Single 

Letter Code 

Non-polar G, V, A, L, I, M B 

Non-polar Aromatic F, Y, W J 

Polar uncharged S, T, C, P, N, Q O 

Polar positively charged K, R, H U 

Polar negatively charged D, E X 

 

Molecular Docking: The HDock server server49 was 

utilised for protein-peptide docking. Predicting the complex 

structure from the structures of the individual proteins is 

what this docking is all about. A protein's steric and physico-

chemical complementarity at its interface is crucial to 

docking methods. This server employs a hybrid approach, 

integrating both template-based and template-free docking 

methods to predict the interactions between receptors and 

ligands. In this case, the docking for targeted docking with 

the 3D IL10 protein structure and the peptides brought 

attention to the binding site residues. The PepFold 3 server23 

was used to create the 3D structure of both the original 

peptide and the variant peptides. Additional molecular 

dynamics simulation research was conducted using the 

protein-peptide complexes following docking.  

 

Molecular Dynamics Simulation: By employing the 

Gromacs 2022.4 software package2, protein-ligand complex 

molecular dynamics (MD) simulations have been conducted. 

Top-docked poses were utilized throughout the 500 ns MD 

simulation. The molecular topology was generated prior to 

using the CHARMM36 force field16  on the proteins and 

ligands. The electrostatic force over a given distance was 

then determined using the Particle Mesh Ewald (PME) 

method47. The system was placed in a cubic solvation box 

with a 1.0 nm buffer and then solvated with TIP3P water 

molecules14. Subsequently, by using Na+ and Cl- ions, the 

neutralization was performed. To remove the steric conflicts, 

the system 50,000 iterations of the steepest descent 

algorithm were performed.  

 

The LINCS algorithm15 was then employed to constrain 

bonds and ensure system stability. Subsequently, the system 

temperature was increased to 310 K over a 100 ps simulation 

in the NVT ensemble, using a timestep of 2 fs. Furthermore, 

the system was equilibrated in the NPT ensemble at 310 K 

and 1 atmosphere for 1 ns. The initial production run was 

500 ns long. The Parrinello-Rahman pressure coupling 

method was employed to maintain constant pressure during 

the production run26 while the velocity-rescaling approach4 

was used to couple the temperature. The post MD simulation 

analysis was performed on the visual platform called 

“Analogue” developed by Growdea Technologies35,42. 

 

MM/GBSA: The binding free energy of the protein-peptide 
complexes was determined using the GROMACS add-on 

tool gmx MM/PBSA46. Here, the last 30 ns of the MD 

simulation were used for the calculation of the binding free 

energy. The equations applied to compute the MM/GBSA 

are shown as follows: 

 

∆𝐺 = 𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥  − [ 𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 + 𝐺𝑙𝑖𝑔𝑎𝑛𝑑 ]                              (1) 

𝛥𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔  =  𝛥𝐻 −  𝑇𝛥𝑆                                                         (2) 

𝛥𝐻 =  𝛥𝐺𝐺𝐴𝑆  +  𝛥𝐺𝑆𝑂𝐿𝑉                                                       (3) 

𝛥𝐺𝐺𝐴𝑆 =  𝛥𝐸𝐸𝐿  +  𝛥𝐸𝑉𝐷𝑊𝐴𝐴𝐿𝑆                                               (4) 

 𝛥𝐺𝑆𝑂𝐿𝑉  =  𝛥𝐸𝐺𝐵  +  𝛥𝐸𝑆𝑈𝑅𝐹                                                   (5) 

𝛥𝐸𝑆𝑈𝑅𝐹  =  𝛾. 𝑆𝐴𝑆𝐴                                                                  (6) 

 

Here, equation 1 represents the change in Gibbs free energy 

(ΔG) of protein-ligand complex formation. The total free 

energies of the complex, free enzyme and ligand in solution 

are denoted by Gcomplex, Genzyme and Gligand respectively. The 

binding free energy (ΔGbind) is the difference between the 

total free energy of the complex and the sum of the free 

energies of the unbound components. The enthalpy change 

(ΔH) includes contributions from gas-phase energy (ΔGgas) 

and solvation free energy (ΔGsolv). The binding free energy 

also includes an entropy term (ΔS). Electrostatic energy 

(ΔEEL) and van der Waals energy (ΔEvdw) contribute to the 

total interaction energy. The solvation free energy is further 

divided into non-polar (ΔGGB) and polar (ΔGsurf) 

components. The non-polar component is calculated based 

on the change in solvent-accessible surface area (SASA) and 

the solvent surface tension parameter (γ). 

 

Results and Discussion 
Recognition of DEGs: The GEO database's accession 

number, GSE62525, was used to get a gene expression 

profile for three types of samples: ATB (active tuberculosis), 

LTBI (latent tuberculosis infection) and healthy cells. It was 

divided into two groups for the purposes of analysis: ATB 

against healthy cells (group 1) and ATB versus LTBI (group 

2). A comparison of the data set was conducted with the help 

of a box plot, which demonstrates that selected samples have 

comparable mean values (Fig. 2). A total of 8794 DEGs were 

identified in group 1, of which 371 genes were upregulated 

and 8423 were downregulated. Similarly, 6962 DEGs were 

identified in group 2, of which 504 genes were upregulated 

and 6458 were downregulated. In the volcano plot, the 

distribution of every DEG is illustrated.  

 

The downregulated genes in both groups exhibit a greater 

degree of significance compared to the upregulated genes 

group 1 containing a greater quantity of DEGs than group 2 

(Fig. 3). 
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Fig. 2: Box plot indicating the average value of the samples taken (a: group 1; b: group 2) 

 

 
Fig. 3: Volcano plot showing the distribution of DEGs, Red colour indicates upregulated genes and blue indicates 

downregulated genes (a: group 1 and b: group 2) 

 

 
Fig. 4: Venn diagram showing the common genes (a: upregulated genes and b: downregulated genes) 
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Fig. 5: Gene enrichment of the common DEGs with initial five log values using gprofiler 

 
A Venn diagram is produced to illustrate the common genes 

showing that there are 162 upregulated genes and 3675 

downregulated genes (Fig. 4). 

 

Pathway Enrichment Analysis: Gene enrichment utilising 

gprofiler31 yielded the KEGG and GO pathways. The 

analysis used the common genes that were upregulated (162 

upregulated genes) and the initial five processes with the 

highest log values were selected (Fig. 5). The molecular 

functions (MF) domain emphasises significant functions 

such as protein binding, interleukin-8 receptor activity and 

immune receptor activity, showcasing the complex 

interactions of proteins in immune responses. The biological 

activities (BP) that have emerged, include response to 



Research Journal of Biotechnology                                                                                                Vol. 20 (11) November (2025)  
Res. J. Biotech. 

https://doi.org/10.25303/2011rjbt2770292     283 

external stimuli, defence response, positive regulation of 

immune system activities, immune effector process and 

immunological response, illustrating the body's advanced 

mechanisms to identify and react to external threats.  

 

The cellular components (CC) study identified key locations 

for immunological activity, such as secretory vesicles, 

secretory granules, the extracellular region, the cell 

periphery and cytoplasmic vesicles. KEGG pathways 

including pertussis, Staphylococcus aureus infection, 

haematopoietic cell lineage and amoebiasis, as well as 

REAC pathways such as neutrophil degranulation, the 

immune system, the innate immune system and interleukin-

10 signalling, were discovered, demonstrating the range of 

diseases and immune responses under investigation. 

WikiPathways emphasised the impact of LDL on CD14 and 

TLR4 and the biological processes related to spinal cord 

injury. Meanwhile, the Human Protein Atlas (HPA) 

concentrated on the shape of enterocytes in the small 

intestine, particularly highlighting microvilli.  

 

The Human Phenotype Ontology (HP) identified premature 

loss of permanent teeth as a manifestation of the genetic 

basis of this illness. This thorough research highlights the 

interrelationship between genetic expressions, pathways and 

physiological responses, providing profound insights into 

the intricate dynamics of health and disease. 

 

Hub Gene Identification: The common upregulated genes 

were employed for protein-protein interaction (PPI) utilising 

STRING. The network has significantly more interactions 

than expected. Out of a total of 162 common genes, 149 

formed connections with 149 nodes, resulting in the 

identification of 319 edges (Fig. 6). The nodes represent 

individual proteins or genes and the lines (edges) indicate the 

relationships or interactions between them. The different 

colours of the nodes and edges often represent various types 

of interactions or classifications such as activation, 

inhibition, or different functional groups. Further, the degree 

method was utilised to identify the top 10 hub genes using 

the Cytohubba plug-in of the Cytoscape. 

 

The top 10 hub genes found in the Cytohubba were listed in 

Table 1, along with their scores determined by the degree 

method. The top score was observed for IL1B with a score 

of 42, while TLR4 and MMP9 had a score of 31 and IL10 

had a score of 30. Fig. 7 shows the interactions between 

these top 10 genes. The interactions among various proteins, 

cytokines, chemokines and receptors that regulate immune 

responses were visually represented in this network. IL1B 

and IL10 are cytokines that exhibit contrasting effects during 

inflammation; MMP9 is an enzyme that aids in immune cell 

migration and degrades the extracellular matrix and TLR4 is 

a receptor involved in pathogen recognition.  

 

FCGR1A receives the Fc segment of IgG antibodies as a 

receptor; CXCR1 and CXCR2 are receptors for chemokines. 

The protein CD274/PD-L1 is capable of impeding the 

immune response in order to avert tissue damage. The 

enzyme ARG1 can regulate immune responses through 

arginine depletion while the receptor TREM1 can enhance 

inflammatory responses. The top 10 hub genes (IL1B, 

TLR4, MMP9, IL10, FCGR1A, CXCR2, CXCR1, CD274, 

ARG1 and TREM1) were searched with the objective of 

identifying a target protein. Several genes among them 

exhibited potential as therapeutic targets or as prognostic 

indicators for TB determination.

 

Table 2 

Top 10 hub genes ranked by Degree method with their scores 

Rank Gene Score 

1 IL1B 42 

2 TLR4 31 

2 MMP9 31 

4 IL10 30 

5 FCGR1A 24 

6 CXCR2 21 

6 CXCR1 21 

8 CD274 19 

9 ARG1 17 

10 TREM1 14 

 

Table 3 

Binding free energy components for the protein-peptide complexes using MM/GBSA technique. 

System ΔVDWAALS ΔEEL ΔENPOLAR ΔGGAS ΔGSOLV ΔTOTAL 

Native 0.00 ± 0.00 -0.01± 0.02 -0.00 ± 0.00 -0.01 ± 0.02 -0.00 ± 0.00 -0.01 ± 0.02 

Variant-I-

CG_KYC 

-69.73 ± 7.20 12.83 ± 14.11 -11.23 ± 0.36 -56.90 ± 13.55 -11.23 ± 0.36 -68.13 ± 13.68 

Variant-II-

CV_RYC 
 

-104.30 ± 7.25 22.54 ± 14.61 -13.88 ± 0.40 -81.76 ± 11.96 -13.88 ± 0.40 -95.64 ± 11.86 



Research Journal of Biotechnology                                                                                                Vol. 20 (11) November (2025)  
Res. J. Biotech. 

https://doi.org/10.25303/2011rjbt2770292     284 

Nevertheless, with regard to their functions in the immune 

response against Mycobacterium tuberculosis, IL-10 

(interleukin-10) emerges as a notably promising target for 

therapeutic intervention. IL-10 is an anti-inflammatory 

cytokine that is essential for preventing tissue damage to the 

host by regulating the immune response33. IL-10 has the 

potential to inhibit immune responses in the context of 

tuberculosis, thereby enabling the bacteria to elude 

elimination and sustain a dormant infection45. IL-10 levels 

that are elevated, have been linked to a heightened 

vulnerability to tuberculosis and to more severe 

consequences of the disease.  

 

A potential therapeutic approach for tuberculosis involves 

the modulation of IL-10 activity or its associated signalling 

pathways, as it could strengthen the immune system's 

capacity to eradicate the infection. Potentially, the efficacy 

of the host immune response against Mycobacterium 

tuberculosis could be enhanced through the reduction of 

IL10-mediated immunosuppression.  

 

 
Fig. 6: Protein-Protein Interactions (PPI) network of shared upregulated DEGs. 

 

 
Fig. 7: Interaction of hub genes found from the cytohubba in the Cytoscape. 
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Fig. 8: (I) PDB structure visualization, (a) 3D structure of IL10 complexed with both IL-10Rα and IL-10Rβ  

(b) Interacting chains (c) Number of interface residues; (II) Interaction analysis; (d) of 3D structure of IL10 

complexed with IL-10Rβ (e) Interacting residues between IL10 and IL-10Rβ. 
 

The biological activity of IL-10, especially its interactions 

with the IL-10 receptor complex, depends on its dimeric 

form20,21. Two alpha units (IL-10Rα) that bind to the IL-10 

dimer and two beta units (IL-10Rβ) required for signal 

transduction make up this receptor complex28. IL-10's 

interaction with its receptor complex sets off a series of 

intracellular signalling events that ultimately lead to the 

cytokine's immunoregulatory effects, which include immune 

cell activity modulation and suppression of inflammatory 

responses11,28,32. Preventing signal transduction by impeding 

IL-10's interaction with the IL-10 receptors might constitute 

a significant strategy. This may be accomplished via the 

development of antibodies that inhibit the receptor or 

molecules that mimic the binding sites of IL-10 on the 

receptor.  

 

Interface Residue: The protein data bank (PDB) was 

queried with PDB ID 6X93 to acquire the three-dimensional 

crystal structure of the chosen protein (IL10 complex). Parts 

I and II of fig. 8 show the results of the thorough analysis of 

the structure. The observation of the 1L10 complex binding 

to both IL-10Rα and IL-10Rβ can be seen in fig. 8(a). Fig. 

8(b) shows the results of an analysis of the PDBsum database 

that revealed the chains' interconnections. Following the 

IL10 dimer chain A-D in terms of the number of contacts 

with interface residues, chain A-C exhibited the largest 

number of interactions (Fig. 8(c)). Therefore, the interaction 

between IL-10 (chain A) and IL-10Rβ (chain C) was greatest 

with 20:18 residues. Fig. 8(d, e) shows the interaction 

residues between IL10 and IL-10Rβ, which were further 

examined using the A-C chain. The interaction between 

chain A (IL10) and chain C (IL-10Rβ) involved 18 residues.  

 

After that, the PDBePISA tool was used to analyze the chain 

A-C complex and forecast the residues at the interface. For 

peptide design, we looked for and chose residues that formed 

a continuous structure. Interface chain C residues were 

measured by PDBePISA: 57–61, 63, 65, 78–85, 106, 108–
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109, 138, 140–143, 147–150 and 197–198. The following 

sequences of amino acids were designed into peptides: 57–

65, 78–85, 138–150, LSYRIFQDK, SLSKYGDH and 

NEYETWTMKNVYN, in that order. The three peptide 

distances (P1, P2 and P3) were plotted in fig. 9. The 

measurement of 6.1 Å was taken for the distance between P1 

residues L and P2 residues H. The 8.9 Å distance was 

measured between P2's S and P3's N. Typically, the distance 

between neighbouring residues in a fully expanded 

polypeptide chain containing Cα atoms is approximately 3.8 

Å.  

 

 
Fig. 9: Distance between the three peptides visualized in the Pymol visualizing tool. 

 
Fig. 10: (a) Elbow method plot (b) K-means clustering for 3 clusters (c) K-means clustering for 4 clusters 
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Fig. 11: Peptides (native, variant-I and variant-II) docked with the protein IL10 aligned with each other represented 

in 3D structure. 

 
Fig. 12: RMSD of the protein-peptide complexes, (a) RMSD of the protein Cα atoms during the 500 ns simulation  

(b) RMSD of the ligands during the 500 ns simulation (c) RMSD of the protein Cα atoms for the last 30 ns simulation 

(d) RMSD of the ligands for the last 30 ns simulation 

 
Therefore, the first gap was connected using two residues 

(GG), while the second gap was connected using GGG. The 

final product is a peptide with 35 residues, composed of 30 

primary amino acids and 5 secondary amino acids that serve 

as linkers. Because of its tiny size and flexibility, glycine is 
frequently utilized as a linker in peptides and proteins. This 

is because it can help to ensure that functional domains are 

folded correctly or that different protein domains can bind to 

each other without causing much steric hindrance. Here is 

the final peptide sequence with the linkers added: 

KDQFIRYSLGGHDGYKSLSGGGNEYETWTMKNVY

N. This sequence was considered the native peptide 

sequence that could bind to IL10. Further, this sequence was 
taken to generate mutations in the linkers for better binding 

with the target protein IL10. 
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Mutation and Clustering: The purpose of performing 

targeted modifications at these linker residues was to 

determine which ones would improve the peptide-protein 

interaction the most. The next thing to do was to see how 

well each mutant is bound to the target protein. Multiple 

mutations were carried out at each linker residue to alter its 

function. There were 205 (or 320,000) mutations in all. A 

process involving peptide conversion according to amino 

acid residues was used to create the mutant peptides. There 

are five distinct types of amino acid residues distinguished 

by their chemical properties: polar uncharged (pol), 

positively charged (pos), negatively charged (neg) and non-

polar aromatic (NPAr). The side chain characteristics of 

amino acids, which impact their behaviour and interaction in 

proteins, are the basis for this classification.  

 

The peptides' amino acid sequences were transformed using 

the one-letter codes according to the category that each 

residue belonged to. This transformation made the sequences 

easier to understand by classifying the amino acids into five 

separate groups according to their chemical characteristics. 

A k-means clustering analysis was subsequently performed 

on the reduced peptide sequences. A vector quantization 

approach seeks to group 'n' observations into 'k' groups, with 

the goal that each observation should be part of the group 

with the closest mean. This method finds groupings or 

clusters in the data, with a predetermined number of clusters 

(k).  

 

The elbow method is utilised to determine the optimal 

number of clusters (k) for the k-means clustering algorithm. 

Calculating the WCSS for different values of k is integral to 

this procedure. The objective is to reduce the WCSS value, 

which quantifies the variance within each cluster. On the 

other hand, the WCSS tends to go down to zero as the 

number of clusters grows. The decline rate changes 

dramatically at the ''elbow'' position on the WCSS versus 

cluster number plot. Having a lesser number of clusters and 

minimizing the WCSS, are both achieved at this ideal 

location. There is a limit beyond which further clustering 

does not significantly increase the variance explained, a 

phenomenon known as diminishing returns.  

 

To summarize, this approach of grouping and simplifying 

peptide sequences for cluster analysis is done quickly by 

applying k-means clustering. The elbow technique is 

beneficial for determining the optimal number of clusters by 

identifying the optimal balance between model complexity 

and clustering granularity.  

 

Many people believe that the sweet spot for cluster size is 

when the curve begins to flatten out, creating an ''elbow.'' 

The elbow plot indicated the possibility of 2-4 cluster 

formation, as demonstrated in fig. 10(a). Two clusters are 

insufficient; therefore, we created and plotted three and four 
clusters instead. The plots for 3 clusters with centroids and 4 

clusters with centroids are displayed in fig. 10(b, c). The data 

was clustered using three clusters instead of the four 

projected clusters because two of them were found to be 

quite similar.  

 

The centroids of these 3 clusters were extracted and the 

sequences are as follows: 

 

UXOJBUJOBOBUXBJUOBOUJOOXJXOJOBUOBJO  

UXOJBUJOBOBUXBJUOBOUJXOXJXOJOBUOBJO  

UXOJBUJOBBBUXBJUOBOJBOOXJXOJOBUOBJO    

 

The mutant region (position that can be mutated) is 

highlighted in yellow in each sequence. These centroids 

were decrypted/decoded back to get the amino acid 

sequences. Further, the mutated peptides were generated 

based on three centroids and the total number of sequences 

generated were 6480. These 6480 mutant peptides were used 

for virtual screening using machine learning.  

 
Virtual Screening: All 6480 peptide sequences were 

screened to identify the most suitable peptide. DeepPurpose 

Architecture, which is a machine learning (ML) approach, 

was used to develop the model. The parameters were 

optimised and the screening proceeded. The best encoder 

was found to be Conjoint_triad, its R-squared on the test 

dataset was 0.966 and its Pearson correlation was 0.983; 

thus, it was used for the screening of 6480 peptides. The 

screening resulted in two best-predicted peptides: variant-I 

peptide – KDQFIRYSLCGHDGYKSLSKYCNEYETW 

TMKNVYN and variant-II peptide – KDQFIRYSLCVH 

DGYKSLSRYCNEYETWTMKNVYN. These two mutant 

peptides were used for molecular docking along with the 

native peptide – KDQFIRYSLGGHDGYKSLS GGGNE 

YETWTMKNVYN. Here, the highlighted red colour in the 

peptide sequences shows the mutated region. 

 

Molecular Docking: Using the PepFold 3 server, we were 

able to predict the three-dimensional structures of both the 

native peptide and the constructed/mutant peptides. The 

Hdock server was used to dock both normal and mutant 

peptides with IL-10 chain A. The following residues were 

chosen for targeted docking: 13–14:A, 17–18:A, 20–22:A, 

24–25:A, 28–29:A, 32–A, 73–74:A, 77–78:A, 81–92:A, 95–

97:A, 99–100:A, 102–104:A, 107:A. The protein-peptide 

complexes that were docked, were shown to be positioned 

over each other in fig. 11. The docking scores for the three 

mutants were as follows: -118.28 kcal/mol for native, -

226.43 kcal/mol for variant-I and -215.38 kcal/mol for 

variant-II.  

 

The protein-protein complexes included in the Protein Data 

Bank typically have docking scores of approximately -200 

kcal/mol or higher, as per hdock docking. In this case, the 

dock score was higher for the mutant peptides compared to 

the normal peptide. This suggests that the synthetic peptide 

has a higher binding affinity for the target protein IL10 
compared to the natural peptide. Additional supplemental 

fig. S1 shows the LigPlot+ visualization of the protein-

peptide interaction.  
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Figure S1: 2D interaction between the protein-peptide complexes for (a) Native peptide,  

(b) Mutant 1 peptide and (c) Mutant 2 peptide 

 

One hydrogen bond with IL10 (Asp100) was found in the 

natural peptide (Tyr15). Asp2-Arg27, Lys1-Glu54, Tyr25-

Leu53 and Val33-Arg110 were the peptide-protein residues 

that variant-I interacted with in IL10. In variant-II, IL10's 

Arg27 and Leu26 interacted with Thr29 and Asn32 

respectively. Additionally, the docked protein-peptide 

complexes were simulated using molecular dynamics 

software. 

 

Molecular Dynamics Simulation: Molecular dynamics 

simulations were conducted to examine the stability and 

flexibility of the protein-peptide complexes. The root mean 

square deviation (RMSD) was calculated to assess the 

conformational change that happens upon the binding of 

proteins and peptides. As illustrated in fig. 12(a, c), the 

relative mechanical strain (RMSD) of the Cα atoms of the 

protein when attached to the peptides is displayed. Fig. 12(b, 

d) shows the results of reporting RMSD for the peptides, 

while the protein molecule was utilized for fitting and 

aligning the structures. It is acceptable to have RMSD values 

between 0.1 and 0.3 nm, or 1-3 Å, particularly for small and 

globular proteins. Significant changes in structural 

conformation are indicated by deviations from this range.  

 

The stability of the protein-ligand complex is positively 

connected with a reduced variation in the RMSD during the 

molecular dynamics simulation whereas a higher fluctuation 

implies a less stable protein-ligand complex 3,29. The native 

peptide-bound protein exhibited a high RMSD of up to 2-3 

nm throughout the 500 ns simulation. The RMSD of the 

protein bound to the two mutant peptides was significantly 

lower than that of the native (Fig. 12a). When attached to the 

two mutant peptides, both proteins displayed RMSD values 

between 0.5 and 0.75 nm, suggesting that they were quite 

stable. During the 500 ns simulation, the RMSD of the native 

peptides was 5-6 nm whereas the other peptides followed a 

similar pattern.  

 

Fig. 12(b) shows that in comparison to the normal peptide, 

the variant peptides exhibited steady protein binding with 

RMSD values ranging from 1 nm to 1.5 nm. For an in-depth 

study, fig. 12(c, d) displayed the RMSD protein and mutant 

peptides for the last 30 ns of the simulation. It was noted that 

the protein-peptide bond remained stable for the majority of 

the remaining 30 ns.  

 

Fig. 12(c) shows that in contrast, over the last 30 ns of the 

simulation, the RMSD of the protein attached to the variant-

I peptide dropped from 0.65 nm to 0.6 nm and then remained 

steady and constant. In the last 30 ns of the simulation, the 

RMSD of the protein bound to variant-II peptide decreased 

from 0.5 nm to 0.45 nm without any notable fluctuations.  
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In the last 30 ns of the simulation, the RMSD of the variant-

I peptide decreased from 1.6 nm to 1.5 nm, as seen in fig. 

12(d). Variant-II peptide showed a RMSD decrease of 1.1 

nm to 1 nm for the last 30 ns, suggesting a more stable 

conformation on binding to the protein than variant-I. 

Overall, when bound to the IL10 protein, the mutant peptides 

were more stable than the normal peptide.  
 

MM/GBSA: The MM/GBSA method was also used to 

determine the protein-peptide complexes' binding free 

energies. All of the protein-peptide complex binding free 

energy components are given in table 2. The stronger is the 

binding affinity between the molecules involved, the lower 

the binding free energy value must be; a negative value 

indicates an advantageous and spontaneous binding process. 

A weak interaction with the protein was indicated by the 

binding free energy of -0.01 ± 0.02 kcal/mol that the natural 

peptide displayed. A high score usually means that the 

binding process demands energy; this suggests that it may 

have an unfavourable interaction with IL10.  
 

In contrast to the original protein, the binding free energy of 

the two mutant peptides was significantly higher. Binding 

free energies of -68.13 ± 13.68 kcal/mol and -95.64 ± 11.86 

kcal/mol were observed for variant-I peptide (CG_KYC) 

and variant-II peptide (CV_RYC) respectively in this 

context. These numbers point to spontaneously higher 

binding affinities to IL10, with variant-II displaying the 

higher affinity of the two.  
 

It has been found that mutations can boost binding affinity 

which means that peptide sequences can be accurately 

modified to improve target protein interaction. When it 

comes to developing therapies, this could have major 

ramifications because high-affinity peptides are powerful 

regulators of protein function. Further research into therapies 

targeting IL10 or similar pathways may find the mutant 

peptides to be intriguing candidates due to their strong 

binding capabilities. 
 

Conclusion 
Researchers found that peptide linker alterations 

significantly increased binding affinity to the IL10 protein 

which could be used as a therapeutic intervention in 

tuberculosis. The work conducted molecular dynamics 

simulations and virtual screening to validate the predictions 

of the efficacy of mutant peptides that were made using 

machine learning techniques. The results show that after 

interacting with IL10, the mutant peptides were more stable 

and had higher binding affinities than the normal peptide. 

The maximum affinity and stability were observed in the 

variant-II peptide (CV_RYC), suggesting that it could be a 

promising option for future therapeutic research.  
 

New tuberculosis medicines can be developed by merging 

network biology, computational biology, machine learning 
and molecular dynamics simulations. The study 

demonstrates the usefulness of this approach in discovering 

and improving physiologically active peptides. 
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